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Model-Based Event-Triggered Multi-Vehicle Coordinated Tracking 
with Communication Delays. 

Eloy Garcia1, Yongcan Cao2, and David W. Casbeer2 

1Infoscitex Corp.  
Dayton, OH 45431 

2Control Science Center of Excellence 
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 

 

Abstract. This report studies the coordinated tracking problem where a group of followers 

intercepts a dynamic leader. It is shown in this paper that reduction of inter-agent communication 

is obtained and improved performance is achieved by implementing dynamical models of the leader 

and followers and by using an event-triggered control strategy that requires each agent to send 

measurement updates only when necessary. Communication delays are considered in this work and 

it is shown how the model-based approach can be used for time propagation of delayed 

measurements to obtain estimates of current positions of other agents in the network. Performance 

bounds on the tracking error have been obtained, which are functions of the communication 

topology, the event thresholds, and the time delays.  

 

 

I.   INTRODUCTION. 

Cooperative control problems have received significant attention in the last years. These 

problems typically require a group of mobile vehicles, also called agents, to perform a 

coordinated task by exchanging relevant information according to either a fixed or a time-

varying communication topology. Most of the results concerning agents with continuous time 

dynamics require each agent to continuously transmit measurements to its neighbors [1], [2]. 

However, in practical problems there exist computation and, especially, communication 

limitations that impose constraints into how frequently an agent is able to receive measurement 

updates from its neighbors.  

Recently, typical problems in cooperative control have been studied from a sampled-data 

perspective [3]-[9] where periodic samples of continuous time output signals are transmitted over 

a communication channel and are also used to compute sampled control inputs. The work in [3] 
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considers a sampled-data consensus approach for double-integrator dynamics and for undirected 

graphs. The authors of [4] consider sampled-data consensus, and two communication cases: 

synchronous and asynchronous. Reference [5] studied the consensus problem with sampled 

information and time-varying communication delays. Their approach considers switching 

communication topologies and consensus is obtained for small enough sampling periods and if 

there exists a frequent enough directed spanning tree in the presence of delays. 

In the present paper, we extend the results on sampled-data cooperative tracking provided in 

[6], in order to reduce communication rates between agents and to improve performance as 

measured by the tracking errors. We make use of the Model-Based Event-Triggered (MB-ET) 

control strategy [10]-[11], [14]-[15] in which each agent implements a nominal dynamical model 

of other agents in the network. The states of the models provide an estimate of the real positions 

of neighbor vehicles and these estimated variables are used to compute the control inputs 

between measurement updates. Each agent generates its corresponding updates based on local 

error which measure the difference between real and estimated positions. The use of event-

triggered control in cooperative control has been used by several authors [12], [13]. In these 

papers a Zero-Order-Hold (ZOH) model is used, that is, the measurement updates received by 

each agent are held constant until new measurements arrive. In the approach shown in this paper, 

the updates received from neighbors are used by each agent to update an internal model of the 

neighbor and provide an estimate of the neighbor’s position between measurement updates. 

The paper is organized as follows: Section II states the problem. Section III presents the main 

results of this note. Examples are provided in Section IV and conclusions are given in Section V.  

 

II.   PROBLEM STATEMENT. 

The problem studied in this paper is the dynamic leader coordinated tracking problem with 

limited communication where a group of n agents receive information about the leader’s position 

at some time instants and they are required to track the leader’s position as close as possible. The 

approach we follow is a model-based approach in which each agent is equipped with dynamical 

models of other agents in the group, a model of the leader, and its own model as well.  

Consider a group of n agents, labeled as followers. Assume the dynamics of each agent are 

given by the following continuous time dynamics: 

2
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( ) ( ), 1, 2,..., .i ir t u t i n= =                                                      (1) 

The control inputs are given in sampled-data form as follows: 

( ) [ ], ( 1) .i iu t u k for kT t k T= ≤ < +                                             (2) 

We use the sampling time T>0 to discretize the continuous time dynamics (1) to obtain: 

[ 1] [ ] [ ].i i ir k r k Tu k+ = +                                                        (3) 

Note that the sampling time T is only used to obtain a discrete time equivalent of the continuous 

time agent dynamics but it is not used to establish a periodic communication between agents. At 

every time k each agent will estimate the positions of other agents and its own, compute its local 

error, and update its local input.  

The discrete time models that will be implemented by each agent are represented by: 
( ) ( ) ( )ˆ ˆ ˆ[ 1] [ ] [ ], 0,1, 2,...,l l l

i i ir k r k Tu k i n+ = + =                                          (4) 

where ( )ˆ [ ]l
ir k  represents the model state of agent i estimated by agent l and ( )ˆ [ ]l

iu k  is the 

corresponding model control input. Note that a model of agent 0 (the leader) is also implemented 

by each agent. The difference between the inputs [ ]iu k  and ˆ [ ]iu k  will become apparent in the 

following section. 

In order to determine the time instants at which a given agent needs to broadcast its current 

measured position we use an event-triggered strategy. The events are triggered by the size of the 

local agent state error. The local state errors are given by:  
( ) ( )ˆ[ ] [ ] [ ], 0,1, 2,..., .i i
i i ik r k r k i nε = − =                                             (5)   

The local errors measure the difference between the real agent position and the position 

estimated by its own local model. When agent i decides to transmit a measurement update then 

we have: 
( )ˆ [ ] [ ]i i i

i ir k r kµ µ=                                                               (6)   

where ikµ  represents the update instants for agent i, i.e. the time instants when agent i updates its 

model and transmits this update; we use this notation to emphasize the fact that the updates do 

not take place, in general, at every time k, but at some irregular instants ikµ . 

Each agent will transmit its current measured position to the rest of the agents if its local error 

is larger than a predefined threshold otherwise the agent will not attempt to send measurements 

3
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since the current estimate is close to its real position. When an agent updates its model the error 

is equal to zero at that time instant following the update (6). Then the following holds: 
( )[ ] 0,1, 2,..., .i
i k i nε α≤ =                                                      (7) 

 

III.   PROPORTIONAL-LIKE CONTROLLER. 

In the MB-ET framework the leader implements a model of its own dynamics. Suppose that the 

leader dynamics can be represented by: 

0 0 0[ 1] [ ] [ ]r k r k Tu k+ = +                                                       (8) 

for unknown 0[ ]u k . Since the input for agent 0 is completely unknown, a reasonable and simple 

model for the leader is a ZOH model, that is, the leader will hold its latest transmitted 

measurement. Note that the leader only implements its own model, the ZOH model based on its 

broadcasted measurements. Since the leader does not receive updates from any other agent it 

does not need to implement models of other agents. Under these circumstances, the local state 

error and the ZOH model corresponding to the leader are given by: 
(0) 0
0 0 0
0 0 0 0

0 0 1

ˆ[ ] [ ] [ ]
ˆ [ ] [ ],

k r k r k
r k r k for k k kµ µ µ

ε

+

= −

= ≤ <
                                           (9)   

where 0 , 1, 2,...kµ µ =  represents the update instants corresponding to agent 0, that is, the time 

instants when the leader transmits a measurement and updates its model.  

In this work we consider a communication topology that can be represented by a directed tree 

graph with root at the leader. A simple example of a group of agents transmitting information 

using this type of graph is shown in Fig. 1. In this configuration each agent i in the network does 

not need to implement models of every other agent, but only of those in the directed path 0-i. If 

agent i needs to send measurements to at least one other agent, it implements models of all 

agents on this directed path including itself. However, if agent i is not sending measurements to 

any other agent (i.e. agent i is a leaf), the agent will not implement a model of itself. For 

instance, agent 3 in Fig. 1 is the destination node of the directed path 0-1-3, then, agent 3 needs 

to implement models of agents 0, 1, and 3. Agent 6 only needs to implement models of agents 0, 

1, and 3 since it never sends updates to any other agent. 
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Fig. 1. A group of n followers tracking the position of a leader using a directed 

tree communication graph. 

 

The control input for the i-th agent is given as a function of the agent’s own position ri and the 

estimates of the positions of the remaining agents as given by its own models. The control inputs 

ui[k] are given by: 

( ) ( )
0 0

1

ˆ ˆ[ ] ( [ ] [ ]) ( [ ] [ ])
n

i i
i ij i j i i

j
u k a r k r k a r k r k

=

= − − − −∑                                    (10) 

where ija  is the (i,j) entry of the adjacency matrix associated with the follower’s communication 

graph and 0 0ia >  if the leader is a neighbor of follower i and 0 0ia =  otherwise. Each agent 

computes its own control input since it has access to its real position ri[k].  

The model control inputs used by agent l for each one of the agents that agent l is receiving 

information from (also including its own model control input, i.e. l=i) can be described by: 

( ) ( ) ( ) ( ) ( )
0 0

1

ˆ ˆ ˆ ˆ ˆ[ ] ( [ ] [ ]) ( [ ] [ ]).
n

l l l l l
i ij i j i i

j
u k a r k r k a r k r k

=

= − − − −∑                              (11) 

The model control inputs can be computed by all agents in the network since every agent 

implements the models (4) of other agents. Equations (11) are only a function of model 

variables; therefore, they can be computed at every node. 
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A.   Time propagation. 

The model-based approach is also useful for time propagation of delayed measurements [10]. For 

instance, the model implemented by agent 3 in Fig. 1 is given by: 
(3) (3)

0 0
(3) (3) (3) (3)

1 10 10 1 3
(3) (3)

31 313 3

ˆ ˆ[ 1] [ ]1 0 0
ˆˆ ˆ ˆ ˆ[ 1] [ 1] 1 0 [ ] [ ]

0 1ˆ ˆ[ 1] [ ]

r k r k
r k r k Ta Ta r k A r k

Ta Tar k r k

   +  
    + = + = − =    
    −+     

                   (12) 

which contains all models that agent 3 needs to implement, i.e. models of agents 0, 1, and 3. 

Suppose an update is triggered at agent 1 at time k, which means that agent 1 updates its model 

variables using its real position as follows:  
(1) (1)

0(1) 0
(1)

11

ˆ [ ] ˆ [ ]ˆ [ ] .
[ ]ˆ [ ]

r k r k
r k

r kr k

   
= =   
    

                                                    (13) 

The entire model state (1)ˆ [ ]r k  is transmitted by agent 1 at time k. The update (13) will be 

received by agent 3 after 31d  sample delays, at time 31k d+ . Instead of updating the 

corresponding part of its model using the delayed measurements (1)ˆ [ ]r k  agent 3 estimates the 

current value of (1)
31ˆ [ ]r k d+  using the portion of its model (12) corresponding to 0r  and 1r , that 

is, agent 3 computes (3) (3)
0 31 1 31[ [ ], [ ]]Tr k d r k d+ +   using the initial conditions 

(3) (3) (1) (1)
0 1 0 1ˆ ˆ[ [ ], [ ]] [ [ ], [ ]]T Tr k r k r k r k=   and using the following state equation: 

(3) (3)
0 0
(3) (3)

10 101 1

[ 1] [ ]1 0
.

1[ 1] [ ]

r k r k
Ta Tar k r k

   +  
=    −+       

 

                                         (14) 

Since (14) involves simple matrix operations the estimate (3) (3)
0 31 1 31[ [ ], [ ]]Tr k d r k d+ +   can be 

obtained instantaneously or with negligible delay after the delayed information has been received 

by agent 3. Then, the following update takes place:   
(3) (3)

0 31 0 31
(3) (3)

1 31 1 31
(3)

3 313 31

ˆ [ ] [ ]
ˆ [ ] [ ]

[ ]ˆ [ ]

r k d r k d
r k d r k d

r k dr k d

   + +
   

+ = +   
   ++   



                                                (15) 

this means that the model variables of agent 3 are updated using the estimates of current model 

variables of agent 1 and the real measurement corresponding to its current local position 

3 31[ ]r k d+ . This update also generates an event and the updated model variables (15) are 

6
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transmitted to agents 6 and 7 in the example in Fig. 1. These agents perform the corresponding 

propagation operations when they receive the update at times 31 63k d d+ +  and 31 73k d d+ + , 

respectively. Agent 4 performs similar time propagations and updates as agent 3 when it receives 

the update from agent 1 at time 41k d+ . In general, the delays are allowed to be different for each 

communication link. 

Note that transmission events are generated when the local agent error reaches its threshold 

value and also when an agent receives an update from its parent such as agent 3 above; agent 3 

received an update from agent 1 and it needs to resend this information to agents 6 and 7 since 

they also implement a model of agent 1. The vector of information is augmented to include the 

current position of agent 3 as well. Since the modeling error of the leader is the only uncertainty 

in this framework, events in the follower nodes are generated only when they receive updates 

from parent nodes. 

Assuming that the delay ijd  is known to the receiving agent i, e.g. by time stamping, then we 

have that:  

 ( ) ( )ˆ[ ] [ ]i j
ij ijr k d r k d+ = +                                                   (16) 

that is, the propagated variables at node i are equal to the current model variables at node j after 

delay ijd . This is expected since both, model j and the propagation equation at node i, use the 

same parameters; then, by using the same initial conditions at time k both of them will produce 

the same response if the delay ijd  is known to agent i (and if no update has taken place at node j 

since the previous update). In general, and especially for long delays, we need to consider the 

possible updates received by node j, for the worst case delay. 

 

B.   Main Results. 

Define the tracking error for each follower as follows: 

0[ ] [ ] [ ].i ik r k r kξ = −                                                       (17) 

Let 1[ ] [ [ ],..., [ ]]T
nk k kξ ξ ξ=  denote the tracking errors in vector form.    

Proposition 1. The tracking error vector response is given by: 

(1) (2) ( )
1 2

1 1
[ ] [0] ( [ 1] [ 1] ... [ 1]) [ 1]

k k
k k l n k l r

n p
l l

k Q Q T A l A l A l Q X lξ ξ ε ε ε− −

= =

= − − + − + + − + −∑ ∑         (18) 

7
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where 10 0( { ,..., })n nQ I TL T diag a a= − −  , 0[ ]A A A= , 0 10 0[ ,..., ]T
nA a a= , iA  represents the matrix 

obtained when all rows in A  are replaced with zero row vectors except for the ith row, and 

0 0[ ] ( [ 1] [ ])r
p nX k r k r k= − + + 1 . A and L are, respectively, the adjacency and the Laplacian matrices 

associated with the followers communication graph. The state model error vectors are defined by
( ) ( ) ( )

0[ ] [ [ ],..., [ ]]i i i T
nk k kε ε ε= . Each individual error ( ) ( )ˆ[ ] [ ] [ ],i i

j j jk r k r kε = −  represents the 

difference between the real position of an agent j compared to the model of j implemented by 

agent i.                                            

Proof. The tracking error dynamics for follower i can be described by:          

0

( ) ( )
0 0 0

1

( ) ( )
0 0 0 0

1

[ 1] [ 1] [ 1]

ˆ ˆ[ ] ( ( [ ] [ ]) ( [ ] [ ])) [ 1]

[ ] ( [ ] [ ] [ ]) ( [ ] [ ]) ( [ 1] [ ]).

i i
n

i i
i ij i j i i

j

n
i i

i ij i j j i i
j

k r k r k

r k T a r k r k a r k r k r k

k T a k k k Ta k k r k r k

ξ

ξ ξ ξ ε ξ ε

=

=

+ = + − +

= + − − − − − +

= − − + − + − + −

∑

∑

       (19) 

The tracking errors can be expressed in compact form as follows: 

1 12 1 10 12 1
0

(1)
21 2 ( 1) ( 1)

0

1

1 ( 1)

( 1) ( 1)20 21 23 1
(2)

( 2) ( 1)

1 0

1[ 1] [ ] [ ]0

0
00 ...

[ ] ...
0

n

j n n
j

n

j n n
j

n

n

n nn

n n

T a Ta Ta a a a

Ta T ak k T k

Ta

a a a a
T k T

a

ξ ξ ε

ε

=

− × +
=

× +

− × +

− × +

 −   
  
  

−  + = − 
  
  
    

  
 
 
 
 − − −
 
 
  

∑

∑

 

 

( )

0 1 1

(1) (2) ( )
10 0 1 2

[ ] [ ]

... 0

( { ,..., }) [ ] ( [ ] [ ] ... [ ]) [ ].

n r
p

n n nn

n r
n n n p

k X k

a a

I TL T diag a a k T A k A k A k X k

ε

ξ ε ε ε
−

 
 
 
  +
 
 
  

= − − − + + + +     

(20) 

The response of (20) with initial conditions [0]ξ  and with inputs ( )[ ], [ ]i r
pk X kε  can be directly 

described as in (18).   

Theorem 2. Assume that the continuous time leader’s position 0 ( )r t  satisfies the following: 

 0 ( ) .r t r≤                                                                (21) 

8
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For any T>0, 0 0( ) ( )r t T r t rT+ − ≤  holds, which is equivalent to (when considering T as the 

discretization sampling interval) 

0 0[ ] [ 1]r k r k r
T
− −

≤                                                       (22) 

then, the maximum tracking error of the n followers is ultimately bounded by 

   ( ) 1
10 0( ) ( { ,..., })i

nr L diag a aε −

∞
+ +                                           (23) 

when T is designed to satisfy  

1,..., 0
min 1/

n

iji n j
T a

=
=

< ∑ .                                                          (24) 

Proof. From (18) the norm of the tracking error can be expressed as: 
1 1

(1) (2) ( )
1 2

0 0
[ ] [0] ( [ 1] [ 1] ... [ 1])

k k
k l n l

n
l l

k Q T Q A l A l A l Tr Qξ ξ ε ε ε
− −

∞ ∞∞
= =∞ ∞

≤ + − + − + + − +∑ ∑      (25) 

Since we consider a directed graph every follower receives updates from one and only one node. 

Then we only need to consider the effect of the estimation errors ( )[ ]i
j kε  for which 0ija > . These 

errors correspond to the difference between neighbors (agent j is a neighbor of agent i). 

The errors are given by: 
( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ ] [ ].i i j j i
j j j j j jk r k r k k r k r kε ε= − = + −                                    (26) 

For the first term in the right hand side of (26) we have that (7) holds. For the difference between 

models of agent i and its neighbor j we consider the response of the entire model state. If an 

event is generated by agent j at time k and the model state vector ( )ˆ [ ]jr k  is sent to agent i, we are 

interested in the largest possible difference at time ijk d+ , where ijd  represents an upper bound 

on the communication delay from agent j to agent i, 
( ) ( ) ( ) ( )ˆ ˆ ˆ[ ] [ ] [ ] [ ]j i j i

ij ij ij ijr k d r k d r k d r k d
∞ ∞

+ − + = + − +
                             (27) 

that is, the difference between the response of the model j from the time of update at time k with 

initial conditions ( )ˆ [ ]jr k  and the time propagation of the measurement ( )ˆ [ ]jr k  by agent i, where 

agent i assumes that no other event has been generated by agent j. In order to bound the 

difference (27) we consider the worst case scenario where the leader moves using its maximum 

9
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velocity and (22) holds with equality. If the delay is small such that the ijrTd α<  holds, then we 

have 

( ) ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] [ ] [ ] [ ] [ 0 ... 0]ij ij ijd d dj i j j T
ij ij j j jr k d r k d A r k A r k Aα α

∞ ∞ ∞
+ − + ≤ − =             (28) 

where ( ) ( )ˆ ˆ[ ] [ ] [ 0 ... 0]j j Tr k r kα α= +  and ˆ
jA  represents the all model dynamics used by agent j as 

illustrated in (12). In the case that the delays are larger and ijrTd α>  holds, then additional 

events have been generated by agent j before the measurement ( )ˆ [ ]jr k  reaches agent i. For this 

case we use an approximation for the response of the model of j which considers the greatest 

possible difference between ( )
0̂ [ ]jr k  and ( )

0̂ [ ]ir k , which is given by ijrTd α+ , as initial condition 

of agent j at time k. An illustration of these responses for the nodes 1 and 3 is shown in Fig. 2.  

 
Fig. 2. Example of response of models (1)ˆ [ ]r k , (3)ˆ [ ]r k  of adjacent agents 1 and 3 with 

T=0.01 seconds, constant delay of 3.3 seconds and worst case leader’s velocity. (1)[ ]x k  
represents the approximation of the response of model 1. 
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Figure 2 shows the approximation of (1) (1) (1)
0 1ˆ ˆ ˆ[ ] [ [ ] [ ]]Tr k r k r k=  denoted by 

(1) (1) (1)
0 1[ ] [ [ ] [ ]]Tx k x k x k=  at k=10 with T=0.01 seconds, a constant delay of 3.3 seconds (330 

sampling times) and α=1. 

In general, considering the worst case leader’s velocity, we have that:   

( ) ( ) ˆˆ ˆ[ ] [ ] [ 0 ... 0]ijdj i T
ij ij j ijr k d r k d A rTdα α

∞ ∞
+ − + ≤ + +                            (29) 

for any two agents i and j, where j is a neighbor of i. Therefore, a bound for the estimation error 

(26) at any time k is given by: 

( ) ˆ[ ] 2 [ 0 ... 0]ijdi T
j j ijk A rTdε α α

∞
≤ + +                                        (30) 

Define: 

  ( ) ( )

1...
max [ ]

i i

i i
ib bi n

a kε ε
=

=                                                        (31) 

where bi denotes the neighbor of agent i, for i=1…n. When all weights are equal ija a=  then (31) 

is given by:    

  ( )( ) ( )

1...
ˆmax [ ] 2 [ 0 ... 0]

i

i i d T
b ji n

a k a A rTdε ε α α
= ∞

= = + +                           (32) 

where 
1...

max iji n
d d

=
=  is the largest communication delay between any two adjacent agents.  

By considering a directed graph tree we can write (20) in the following form: 

[ 1] [ ] [ ] [ ]r
pk Q k T k X kξ ξ ε+ = − +                                                 (33) 

where 

 2 2

(1)
10 0

(2)
2

( )

[ ]

[ ]
[ ]

[ ]
n n

b b

n
nb b

a k
a k

k

a k

ε

ε
ε

ε

 
 
 

=  
 
 
 


                                                            (34) 

The response of (33) can be bounded as follows: 
1 1

( )

0 0
[ ] [0]

k k
k i l l

l l
k Q T Q Tr Qξ ξ ε

− −

∞ ∞∞
= =∞ ∞

≤ + +∑ ∑                              (35) 
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Since the leader has directed paths to all followers and 
1,..., 0

0 min 1/
n

iji n j
T a

=
=

< < ∑  then, by lemma 8.3 

in [7], Q has all its eigenvalues within the unit circle and lim 0k

k
Q

→∞
= . Additionally, from Lemma 

1.26 and Lemma 1.28 in [7], we have that: 
1

1

0
lim ( )

k
l

nk l
Q I Q

−
−

∞→∞
= ∞

= −∑                                                 (36) 

and the maximum tracking error of the n followers, [ ]kξ
∞

, is ultimately bounded by (23).  

The state error for the leader contains significant model uncertainties since it is not possible to 

predict the behavior for this particular vehicle. A ZOH model is implemented by the followers 

and also by the leader itself and it was given in (9). The state error for the leader increases in 

general after every update for a non-stationary leader. The leader is able to store its latest 

broadcasted update and compute (9) in order to decide when a new update should be broadcasted 

to the rest of the agents. Note that (7) holds for any agent including the leader.   

Remark 1. In Theorem 2 and similar to the results in [6]-[7] T has to meet certain conditions 

for stability, i.e. it has to be small enough so the overall system does not become unstable. Using 

the MB-ET framework we are able to reduce T to obtain a stable matrix Q but we do not need to 

communicate every T seconds. We are now able to avoid frequent communication by choosing a 

desired error threshold α while maintaining a stable overall system. 

Remark 2. An additional advantage of the framework presented in this paper compared to the 

sampled-data approach [6]-[7] is that the agents are not required to transmit measurements to 

neighbors at the same time instants, i.e. at the sampling instants kT, k=0,1,… In the sampled-data 

approach the agents are not required to communicate continuously but all of them use the same 

period T to sample and transmit their measurements. The communication scheme in the present 

paper allows for asynchronous communication in the sense that each agent determines its own 

transmitting time instants.  

 

IV.   EXAMPLES. 

Example 1. Consider a group of n=7 vehicles following the position of a leader (Agent 0) and 

transmitting information according to the graph in Fig. 1. The parameters for this example are as 

12
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follows: 10 20 31 411, 8, 3, 4,a a a a= = = = 52 63 735, 3 6, 6.a a a= = =  The sampling time is T=0.01 sec 

and the threshold is α=1. The delay bounds for each communication link are as follows: 

10 202.2sec, 2.25sec,d d= = 31 413sec, 3.05sec,d d= = 52 63 733.1sec, 2.5sec, 2.9sec.d d d= = =  

Fig. 3 shows the position of the leader and followers over time (top row) and the tracking 

error (bottom row) for a leader with constant velocity.    

 
Fig. 3. Positions and tracking errors for MB-ET leader follower with constant leader velocity. 

 

Example 2. Consider the same example with the same weights, threshold sampling time, and 

communication delay bounds. Fig. 4 shows the position of the vehicles over time (top row) and 

the tracking errors (bottom row) for the case of a leader with time-varying velocity.  

 

V.   CONCLUSIONS. 

The results in this paper extend previous work concerning cooperative control and tracking of 

a dynamic leader. Previous results required a small enough sampling time for bounded tracking 

error otherwise the overall system becomes unstable. The approach in this paper implements an 

event-triggered control and a model-based approach that provides estimates of positions of other 
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agents. The overall framework is able to reduce transmission of information among agents while 

maintaining a bounded tracking error. Simulation examples show the effectiveness of this 

approach. Future work will consider the implementation of models of neighbors only (versus the 

entire directed path) to reduce model order and complexity, and will also consider more general 

communication topologies. 

 
Fig. 4. Positions and tracking errors for MB-ET leader follower with time-varying leader velocity. 
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